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1. INTRODUCTION

Since the seminal paper by Koenker and Bassett (1978), quantile regression
(QR) has received a lot of attention from the literature on both theoretical and
applied econometrics. QR provides a useful framework in which researchers are
allowed to investigate heterogeneous effects of variables across the distribution
of an outcome variable. As heterogeneous effects are one of the most important
issues in empirical studies in economics, QR has also become a popular approach
in empirical economics.

It is common that a variable of interest is endogenous in many observational
studies, and one of popular approaches to dealing with endogeneity issues is to
use instrumental variables (IVs). Endogeneity in the QR framework has been
studied by numerous papers in the literature (e.g., Chernozhukov and Hansen,
2005, 2006; Chernozhukov et al., 2007; Horowitz and Lee, 2007; Lee, 2007;
Imbens and Newey, 2009; Chen and Pouzo, 2009, 2012; Chernozhukov et al.,
2015).

In this paper, we consider a nonparametric QR model with endogenous re-
gressors. Building upon the semiparametric triangular model of Lee (2007),
we develop a fully nonparametric triangular model similar to that of Newey et
al. (1999). Then, we study the identification of model parameters in the non-
parametric triangular model for QR. The identification conditions are similar to
those in Newey et al. (1999), utilizing the additively separable structure of the
model and the existence of instrumental variables. The identification strategy
presented in this paper is a control function approach that relies on the struc-
ture of a triangular system of equations (cf. Newey et al., 1999; Blundell and
Powell, 2003, 2004; Lee, 2007; Imbens and Newey, 2009; Blundell et al., 2013;
Chernozhukov et al., 2015). In this regard, the identification strategy of this pa-
per differs from that of the previous studies that use nonparametric quantile IV
(NPQIV) regression models, where models for endogenous regressors are ab-
sent, and identification is achieved by some conditional moment restriction on
the IVs (e.g., Chernozhukov et al., 2007; Chen and Pouzo, 2009, 2012).

We propose to use a sieve method to estimate the parameters in the model
that are nonparametrically specified. We adopt the penalized sieve minimum
distance (PSMD) approach for nonparametric models, which was developed by
Chen and Pouzo (2012). This estimation approach consists of a one-step proce-
dure using conditional moment restrictions, and it is very easy to implement in
practice. Moreover, we do not require a certain type of identifying assumptions
on reduced-form parameters by using the one-step procedure. This mitigates the
issue about model misspecification. We establish the consistency and conver-



SUNGWON LEE 33

gence rate of the PSMD estimator of the true parameters under a set of low-level
conditions.

One important and practical advantage of the PSMD estimator in the setting
of this paper is that it does not suffer from an ill-posed inverse problem. It is well
known that in a model where nonparametric parameters are identified through a
set of conditional moment restrictions and endogenous variables are arguments
of the nonparametric objects, many semi-/non-parametric estimators are subject
to an ill-posed inverse problem that may lead to a slower convergence rate (cf.
Carrasco et al., 2007; Horowitz, 2014). While the additively separable NPQIV
model considered in Chen and Pouzo (2012) is subject to the ill-posed inverse
problem, our sieve estimator does not suffer from such an ill-posed inverse prob-
lem by the virtue of the triangular system of equations, where we specify models
for endogenous regressors.1

Our estimation strategy is a one-step procedure, which facilitates the anal-
ysis on the asymptotic properties of the estimators. When the identification of
model parameters is based on a control function approach, it is natural to use a
multiple-step estimation procedure (e.g., Newey et al., 1999; Das et al., 2001;
Imbens and Newey, 2009; Chernozhukov et al., 2015). However, it is important
to account for the effects of estimators in a prior step on the final estimator when
establishing the asymptotic theory, including convergence rates, for such estima-
tors, and this issue is sometimes referred to as “generated regressors problems”
(cf. Hahn and Ridder, 2013; Hahn et al., 2018; Chen et al., 2021). On the other
hand, the PSMD estimation procedure used in this paper allows us to effectively
circumvent such issues.2

We conduct a small Monte-Carlo simulation study to investigate whether
the proposed estimator performs well in finite samples. Our simulation results

1Related to this issue, there are studies in the literature using some other regularization than
sieve methods to resolve the ill-posed inverse problem. One of the most popular regularization
methods is the Tikhonov-type regularization (Tikhonov (1963a,b)), and the Tikhonov regulariza-
tion has been widely used for estimation of nonparametric IV or NPQIV models (e.g., Hall and
Horowitz, 2005; Horowitz and Lee, 2007; Darolles et al., 2011).

2Although we do not consider inference in this paper, our one-step PSMD estimator has
several advantages over a conventional two-step estimator in terms of inference. First, we can ef-
fectively circumvent estimation of asymptotic variances for inference by employing the bootstrap.
We believe that the inference results developed by Chen and Pouzo (2015) are applicable to our
PSMD estimator, and one of their main results is the bootstrap validity. Second, the inference
results of Chen and Pouzo (2015) allow us to consider inference for functionals that are not

√
n-

estimable. To the best of our knowledge, these important and practically useful results have not
been established for two-step sieve estimation procedures. We leave the inference for the PSMD
estimator proposed in this paper as future work.
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indicate that the PSMD estimator has negligible biases and small standard de-
viations. Moreover, we compare the finite-sample performance of the one-step
PSMD estimator with that of a conventional two-step sieve estimator. The simu-
ation results indicate that our one-step PSMD estimator has a lower variance
than the conventional two-step sieve estimator, whereas the bias of the one-step
estimator tends to be greater than the bias of the two-step estimator. The Monte-
Carlo simulation study also confirms that our one-step estimator is robust to
misspecification of the reduced-form equation.

The main contribution of this paper is twofold. First, we extend the semi-
parametric model for QR with endogenous regressors in Lee (2007) to a fully
nonparametric framework for QR while incorporating endogenous regressors
and provide a set of conditions under which the model parameters are nonpara-
metrically identified. Second, we establish the consistency and convergence rate
of nonparametric PSMD estimator in the framework. The PSMD estimator pro-
posed in this paper has many desirable properties and it is tractable and easy to
implement. Therefore, we believe that the nonparametric framework and QR
estimator of this paper are widely applicable to various empirical studies.

The additively separable NPQIV model in Chen and Pouzo (2012) is prob-
ably the most closely related to the model in this paper. We highlight the main
differences between the model in this paper and that in Chen and Pouzo (2012).
First, we rely on a triangular system of equations where all endogenous vari-
ables are determined within the system, whereas the NPQIV model in Chen and
Pouzo (2012) does not require a specification for endogenous regressors. These
models are nonnested, as pointed out by Horowitz (2014, p.28); and therefore,
the additively separable NPQIV model in Chen and Pouzo (2012) is not more
general than ours, and our model is not more general than the model in Chen
and Pouzo (2012). Second, the identification strategy of this paper is completely
different from that of Chen and Pouzo (2012). While we use a control function
approach to identification of the model parameters, Chen and Pouzo (2012) im-
pose a high-level condition for identification (cf. Condition 6.2(ii) in Chen and
Pouzo (2012)). This high-level condition in Chen and Pouzo (2012) is hard to
verify in practice. Lastly, the NPQIV model in Chen and Pouzo (2012) needs to
assume the degree of ill-posedness to derive the convergence rate in their Propo-
sition 6.2 (cf. Condition 6.3(ii) in Chen and Pouzo (2012)). On the other hand,
we do not require such a restriction on the data generating process (DGP). In all,
the assumptions for identification and estimation of this paper are quite differ-
ent from those of Chen and Pouzo (2012); and therefore, the properties of the
PSMD estimator proposed in this paper are established in a different way from
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Chen and Pouzo (2012).
The rest of this paper is organized as follows. In Section 2, we develop

the model and consider identification of the model. Section 3 introduces the
PSMD estimation for the triangular QR model. We establish the consistency
and convergence rate of the PSMD estimator in Sections 4 and 5, respectively.
We present the Monte-Carlo simulation results in Section 6. Then, Section 7
concludes and discusses future work. All mathematical proofs are presented in
the appendix.

Notation For a generic random variable A, the support of A is denoted by
Supp(A). For two random variables A and B, and for any τ ∈ (0,1), QA|B(τ|b)
indicates the τ-th conditional quantile of A on B = b, and FA|B(a|b) is the con-
ditional distribution function of A given B = b. E[·] is the expectation operator.
For any positive real sequences {an} and {bn}, an ≲ bn means that there exist a
finite constant C > 0 and N ∈N such that an ≤Cbn for all n ≥ N. If an ≲ bn and
bn ≲ an, it is denoted by an ≍ bn.

2. THE MODEL AND IDENTIFICATION

We consider the following nonparametric triangular model: for each τ ∈
(0,1),

Y = g(X ,Z1;τ)+U(τ),

X = h(Z)+V,
(1)

where X ∈ Rdx , Z1 ∈ Rdz1 , Z ≡ (Z
′
1,Z

′
2)

′ ∈ Rdz1+dz2 . U(τ) and V are unobserved
error terms that are scalar, and Z2 is a vector of excluded variables such that
Z2 ∈ Rdz2 and dz2 ≥ dx. We call the first equation in model (1) the outcome
equation, and the second equation is referred to as the reduced-form equation.

To allow for endogeneity of X , we assume that U(τ) and V can be correlated.
The functions g and h are the parameters of interest that are nonparametrically
specified, and researchers can only observe (Y,X

′
,Z

′
)
′
from the data.

The model in (1) is closely related to that of Newey et al. (1999) in the
sense that both equations have an additively separable structure between ob-
served and unobserved variables. It is also a natural nonparametric extension
of the model considered in Lee (2007), with a minor change in the specifi-
cation for the reduced-form equation. Specifically, Lee (2007) assumes that
g(X ,Z1;τ) = X

′
β (τ) + Z

′
1γ(τ) and h(Z) = µ + Z

′
π , while allowing that the

reduced-form equation is also a QR model.
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Suppose that h(·) is identified from the reduced-form equation and that

QU(τ)|Z,V (τ|Z,V ) = QU(τ)|V (τ|V ). (2)

Equation (2) is qualitatively the same as the model restriction (2) in Lee (2007).
A similar restriction was also considered by Newey et al. (1999) in a framework
for conditional mean regression. Equation (2) is implied by that Z is independent
of U(τ) conditional on V . When X is endogenous and Z is independent of the
error terms, the conditional τ-th quantile of U(τ) on V is not a constant function.
Therefore, we assume that QU(τ)|V (τ|V ) is a non-trivial function of V , which is
denoted by r(V ;τ):

QU(τ)|X ,Z(τ|X ,Z) = QU(τ)|X ,V (τ|X ,V )

= r(V ;τ).
(3)

As a result, we have the following model restriction:

QY |X ,Z1,V (τ|X ,Z1,V ) = g(X ,Z1;τ)+ r(V ;τ), (4)

where V = X −h(Z).
We now consider identifying conditions needed for identification of g, r, and

h.

Assumption 1. There exists a known (x̄
′
, z̄1

′
)
′ ∈ Supp(X ,Z1) such that g(x̄, z̄1;τ)=

0.

Assumption 2. (i) g(X ,Z1), r(V ), and h(Z) are differentiable; (ii) the boundary
of Supp(Z,V ) has zero probability.

Assumption 3. The function h(·) is identified over the support of Z.

Assumption 4. (i) For each τ ∈ (0,1), QU(τ)|Z,V (τ|Z,V ) = QU(τ)|V (τ|V ) almost

surely; (ii) Pr
(

rank
(

∂h(Z)
∂Z2

)
= dx

)
= 1.

Assumption 1 is a normalization condition, which is standard in the literature
on nonparametric identification (cf. Matzkin (2007)).

Assumption 2 imposes conditions on the smoothness of the parameters and
the distribution of (Z,V ). The latter condition was also considered by Newey et
al. (1999).

Assumption 3 is a high-level, but mild condition. Since h(·) is a reduced-
form parameter, it is nonparametrically identified under a standard condition for
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Z and V . Specifically, one can consider the conditional mean independence (i.e.,
E[V |Z] = 0 almost surely) as in Newey et al. (1999), or the τ̃-th conditional
quantile independence (i.e., QV |Z(τ̃|Z) = 0 almost surely) for some τ̃ ∈ (0,1) as
in Lee (2007). As will be shown in the Monte-Carlo simulation in Section 6, the
estimation procedure proposed in this paper yields a consistent estimator of h,
regardless of what identifying assumption for h is imposed.

Assumption 4 is crucial for identification. The first condition of Assumption
4 requires that the common regressor Z1 and the vector of excluded variables,
Z2, are conditional quantile independent of the error term U(τ) given V . This is
a quantile version of the conditional mean independence considered by Newey
et al. (1999) and a nonparametric version of the conditional τ-th quantile inde-
pendence considered by Lee (2007). The second condition of Assumption 4 is a
nonparametric version of the rank condition in the linear simultaneous equations
model. This condition implicitly imposes a restriction that dz2 ≥ dx.

The next theorem shows that under Assumptions 1–4, one can nonparamet-
rically identify g, r, and h.

Theorem 1. Suppose that Assumptions 1–4 hold. Then, g, r, and h are nonpara-
metrically identified over their supports.

3. ESTIMATION

Let g0, r0, and h0 be the true parameter values for g, r, and h, respectively.
We assume that G , R, and H are the parameter spaces for g, r, and h, respec-
tively. We denote the vector of parameters by α (i.e., α ≡ (g,r,h)

′
), and the true

parameter vector is denoted by α0. The parameter space for α is denoted by
A , which is the Cartesian product of the parameter spaces for g, r, and h (i.e.,
A = G ×R×H ).

Let {Wi ≡ (Yi,X
′
i ,Z

′
i)

′
: i = 1,2, ...,n} be the data. For each τ ∈ (0,1), con-

sider the following conditional moment restriction:

m(X ,Z;α)≡ E [ρτ(W ;α)|X ,Z]

= E [1(Y ≤ g(X ,Z1;τ)+ r(X −h(Z);τ))− τ|X ,Z] , (5)

where 1(·) is an indicator function. Under the identification conditions, we have
that m(X ,Z;α) = 0 almost surely in X and Z if and only if α = α0.3

We consider the sieve minimum distance (SMD) estimation approach pro-
posed by Chen and Pouzo (2012) that allows for a penalty function, which we

3Obviously, m also depends on τ , but we drop τ from the expression of m.
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refer to as PSMD estimation approach. The PSMD sieve estimator of α0, α̂n, is
defined as

α̂n ≡ arg inf
α∈An

{
1
n

n

∑
i

m̂n(Xi,Zi;α)
′ [

Σ̂n(Xi,Zi)
]−1

m̂n(Xi,Zi;α)+λnP̂n(α)

}
,

(6)
where m̂n(x,z;α) is a consistent estimator of m(x,z;α), Σ̂n(x,z) is a consistent
estimator of positive definite matrix Σ(x,z), and P̂n(α)≥ 0 is a possibly random
penalty function, λn is a positive real sequence such that λn ↓ 0. An is a sieve
space for the parameter space A . Due to the flexibility and tractability of the
PSMD approach, it has been widely used to estimate semi-nonparametric mod-
els for various empirical studies (e.g., Chen and Ludvigson (2009); Chen et al.
(2013); Compiani (2022)).4

We consider a series estimator of m(X ,Z, ;α), m̂n(X ,Z;α). That is, we de-
fine

m̂n(X ,Z;α)≡ pJn(X ,Z)
′
(P

′
P)−

n

∑
i=1

pJn(Xi,Zi)ρτ(Wi;α), (7)

where {p j(·, ·)}∞
j=1 is a sequence of some basis functions,

pJn(x,z)≡ (p1(x,z), p2(x,z), ..., pJn(x,z))
′

, and P ≡
[
pJn(X1,Z1), pJn(X2,Z2), ..., pJn(Xn,Zn)

]′
. When the argument of the

basis functions is multi-dimensional, one can construct a sequence of basis func-
tions by using tensor-product of univariate basis functions (cf. Chen (2007)).

It is worth pointing out that the nonparametric objects in the quantile model
restriction in (5) do not depend on any endogenous regressors once we include
r(X −h(Z)). Therefore, the PSMD estimator of α0, α̂n, does not suffer from an
ill-posed inverse problem.

We introduce some class of functions. Let f : D → R where D ⊆ Rdx for
some integer dx ≥ 1. Let ω = (ω1, ...,ωdx) be a dx-tuple of nonnegative inte-
gers, and define the differential operator as ∇ω f ≡ ∂ |ω|

∂xω1
1 ∂xω2

2 ···∂x
ωdx
dx

f (x), where

x = (x1,x2,...,xdx) ∈ D and |ω| ≡ ∑
dx
i=1 ωi. Let [p] be the integer part of p ∈ R+,

then a function f : X → R is called p-smooth if it is [p] times continuously dif-
ferentiable on X and for all ω such that |ω| = [p] and for some ν ∈ (0,1] and

4The sieve approach is also useful for estimating unknown distribution or density functions.
For example, Song (2015) proposes a simulated Kolmogorov-Smirnov test based on sieve density
estimators.
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constant c> 0, |∇ω f (x)−∇ω f (y)| ≤ c · ||x−y||νE for all x,y∈X , where || · ||E is
the Euclidean norm. Let C [p](X ) denote the space of all [p] times continuously
differentiable real-valued functions on X . A Hölder ball with smoothness p is
defined as follows:

Λ
p
C(X )≡ { f ∈ C [p](X ) : sup

|ω|≤[p]
sup
x∈X

|∇ω f (x)| ≤C,

sup
|ω|=[p]

sup
x,y∈X ,x ̸=y

|∇ω f (x)−∇ω f (y)|
||x− y||νE

≤C},

where C is a positive finite constant.
We introduce norms on A . For a generic function defined on the sup-

port of a random variable X with its distribution function FX , X , let || f ||∞ ≡
esssupx∈X | f (x)| and || f ||22 ≡

∫
f (x)2dFX(x) denote the supremum-norm (or

sup-norm) and L2-norm, respectively, while esssup denotes the essential supre-
mum. For any α, α̃ ∈ A , define ||α − α̃||A ,∞ ≡ ||g(·, ·)− g̃(·, ·)||∞ + ||r(·)−
r̃(·)||∞ + ||h(·)− h̃(·)||∞ and ||α − α̃||2A ,2 ≡ ||g(·, ·)− g̃(·, ·)||22 + ||r(·)− r̃(·)||22 +
||h(·)− h̃(·)||22. For a (random) vector A, ||A||E is the Euclidean norm of A.

4. CONSISTENCY

We now establish that the sieve estimator α̂n is consistent for the true param-
eter value α0 in the sup-norm || · ||A ,∞. For the simplicity of notation, we drop τ

from the expressions for g and r.
We impose the following assumptions to show that the sieve estimator α̂n is

consistent for α0 with respect to || · ||A ,∞.

Assumption 5. (i) The data {Wi : i = 1,2, ...n} are i.i.d; (ii) The conditional
distribution of Y on X and Z admits its conditional density function fY |X ,Z such
that fY |X ,Z(g0(X ,Z1;τ)+ r0(X −h0(Z);τ)|X ,Z)> 0 almost surely, fY |X ,Z(y|x,z)
is continuous in (y,x

′
,z

′
)
′
and supy fY |X ,Z(y|x,z)< ∞ over (x

′
,z

′
)
′ ∈ Supp(X ,Z);

(iii) Supp(X ,Z) is a compact subset of Rdx+dz with Lipschitz continuous bound-
ary; (iv) the density function of (X ,Z), fXZ(x,z), is bounded and bounded away
from zero over Supp(X ,Z).

Assumption 6. (i) g0 ∈G ≡Λ
pg
cg (Supp(X ,Z1)), r0 ∈R ≡Λ

pr
cr (Supp(X −h0(Z)),

and h0 ∈ H ≡ Λ
ph
ch (Supp(Z)) with pg > dx + dz1 , pr > dx, and ph > dz; (ii) all

first-order partial derivatives of g0, r0, and h0 are uniformly bounded.
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Assumption 7. (i) (p j(·))∞
j=1 is a sequence of polynomial functions; (ii) the sieve

spaces for G , R, and H are given by

Gn ≡
{

gn(x,z1) = pkg,n(x,z1)
′
βg,n : ||gn||∞ ≤ cg

}
,

Rn ≡
{

rn(v) = pkr,n(v)
′
βr,n : ||rn||∞ ≤ cr

}
,

Hn ≡
{

hn(z) = pkh,n(z)
′
βh,n : ||hn||∞ ≤ ch

}
,

where kg,n, kr,n and kh,n are some positive non-decreasing integer sequences such
that kg,n,kr,n,kh,n → ∞, max(kg,n,kr,n,kh,n) = o(n);

(iii) let Qg,n ≡ E
[

pkg,n(X ,Z1) · pkg,n(X ,Z1)
′
]
, Qr,n ≡ E

[
pkr,n(V )pkr,n(V )

′
]
, and

Qh,n ≡ E
[

pkh,n(Z)pkh,n(Z)
′
]
, then the eigenvalues of Qg,n, Qr,n and Qh.n are

bounded above and away from zero uniformly over all n.

Assumption 8. (i) Pr
(
Σ(X ,Z) = Σ̂n(X ,Z) = 1

)
= 1 for all n; (ii) λn = 0 for all

n.

Assumption 9. FY |X ,Z(g0(·, ·;τ)+r0(·−h0(·;τ)|X = ·,Z = ·)∈Λ
pm
cm (Supp(X ,Z))

with pm > 1/2.

Assumption 10. (i) (p j(·))∞
j=1 is a sequence of polynomial functions;

(ii) max j≤Jn E
[
||p j(X ,Z)||2E

]
< C < ∞ for some constant C; (iii) the smallest

eigenvalue of E
[

pJn(X ,Z)pJn(X ,Z)
′
]

is bounded away from zero for all Jn; (iv)

Jn → ∞ as n → ∞ and J3
n = o(n).

Condition (i) in Assumption 5 imposes conditions on the DGP. Condition (ii)
in Assumption 5 is standard in the literature on QR. Condition (iii) and (iv) in
Assumption 5 impose conditions on the DGP of X and Z.

Assumption 6 specifies the parameter spaces for the structural functions g, r,
and h. The parameter spaces are a Hölder ball with some degree of smoothness
and boundedness.

Assumption 7 defines sieve spaces for G , R, and H . We use polynomial
sieve spaces to approximate the parameter functions. The choice of sieve spaces
depends on the parameter spaces and support conditions. When a function
with a compact support belongs to a Hölder ball, it is well known that finite-
dimensional linear sieve spaces, such as polynomial, trigonometric, or spline
sieve spaces, can well approximate functions in the Hölder ball.5 Condition

5For more details on the choice of sieve spaces, one may refer to Chen (2007).
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(ii) imposes some rate condition on kg,n, kr,n, and kh,n. It is obvious that An ⊆
An+1 for all n ≥ 1 since kg,n,kr,n,kh,n → ∞. Conditions (i) and (ii) in Assump-
tion 7, together with Assumption 6, ensure that there exist sequence of func-
tions {πng0}n, {πnr0}, and {πnh0} such that (πng0,πnr0,πnh0) ∈ An and ||g0 −
πng0||∞ = O

(
k
−pg/(dx+dz1 )
g,n

)
, ||r0 −πnr0||∞ = O

(
k−pr/dx

r,n

)
, and ||h0 −πnh0||∞ =

O
(

k−ph/dz
h,n

)
(cf. Newey (1997)). In addition, we have ∪nAn = A , where, for a

set A, A is the closure of A, under Assumptions 6 and 7. Condition (iii) of As-
sumption 7 is standard in the literature on sieve or series estimation (e.g., Newey
(1997); Belloni et al. (2015, 2019)).

Assumption 8 defines the weighting matrix and the parameter for the degree
of penalty, λn. Since Chen and Pouzo (2012) show that the use of a slowly grow-
ing finite-dimensional sieve space (i.e., max(kg,n,kr,n,kh,n) = o(n)) is easy to
compute estimators and that estimators using a slowly growing finite-dimensional
sieves with a low penalty (or without penalization) perform well in finite sam-
ples, we do not use penalization in this paper.6 The PSMD estimation procedure
without penalization can be carried out by setting λn to zero for all n, as in con-
dition (ii) of Assumption 8.

Assumption 9 specifies the space of functions where the conditional moment
function m belongs to. Since Supp(X ,Z) is compact by Assumption 5, we use
polynomial sieve spaces to construct the series estimator of m, as in (7).

Assumption 10 is a set of sufficient conditions under which the sieve esti-
mator m̂n behaves well in the sense that some conditions for consistency of the
sieve estimator α̂n are satisfied (cf. Assumption 3.3 in Chen and Pouzo (2012)).
In particular, condition (iii) of Assumption 10 restricts the rate of Jn. If Jn ≍ kn,
where kn = max(kg,n,kr,n,kh,n), with Jn ≥C · kn for some constant C > 0, condi-
tion (iii) requires that k3

n/n = o(1).

The following theorem demonstrates that the sieve estimator α̂n is consistent
for α0 with respect to || · ||A ,∞.

Theorem 2. Suppose that Assumptions 1–4 hold. If Assumptions 5 – 10 also
hold, then we have

||α̂n −α0||A ,∞ = op(1).

6One can refer to Chen and Pouzo (2012) for the precise definition of slowly growing sieve
spaces and comparison between slowly growing and large sieves.
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5. CONVERGENCE RATES

Given that the sieve estimator α̂n is consistent for α0 with respect to || · ||A ,∞,
we consider a shrinking || · ||A ,∞ neighborhood around α0. For given small ε > 0
and large M > 0, we define

Aos ≡
{

α ∈ A : ||α −α0||A ,∞ ≤ ε, ||α||A ,∞ ≤ M
}
,

Aosn ≡ Aos ∩An.

Define

dm(X ,Z;α0)

dα
[α −α0]≡

dE [ρ(W ;(1− t)α0 + tα|X ,Z]
dt

∣∣∣
t=0

as the pathwise derivative of m in the direction [α −α0] evaluated at α0. Let || · ||
denote a pseudo metric on Aos, where for any α1,α2 ∈ Aos,

||α1−α2|| ≡

√√√√E

[(
dm(X ,Z;α0)

dα
[α1 −α2]

)′

(Σ(X ,Z))−1
(

dm(X ,Z;α0)

dα
[α1 −α2]

)]
.

In this section, we establish the convergence rate of the sieve estimator α̂n with respect
to || · ||2. We impose the following additional condition.

Assumption 11. (i) Aos and Aosn are convex; (ii) E
[
||m(X ,Z;α)||2E

]
≍ ||α −α0||2 for

all α ∈ Aosn.

Condition (i) in Assumption 11, together with Assumption 5-(ii), guarantees that
the norm || · || is well defined over Aos and Aosn. Condition (ii) in Assumption 11 is
mild when we focus on the shrinking neighborhood of α0, Aosn (cf. van der Geer (2000,
section 12.3)).

The following theorem provides the L2-convergence rate of the sieve estimator α̂n:

Theorem 3. Suppose that the conditions in Theorem 2 are satisfied. If Assumption 11 is
additionally satisfied, then

||α̂n −α0||A ,2 = Op

(
max

{
||α0 −πnα0||A ,2,

√
Jn

n
,J

− pm
dx+dz

n

})
.

If Jn ≍ kn = max
(
kg,n,kr,n,kh,n

)
, then the convergence rate in Theorem 3 is reduced

to

||α̂n −α0||A ,2 = Op

(
max

{
k
−pg/(dx+dz1 )
g,n ,k−pr/dx

r,n ,k−ph/dz
h,n

√
kn

n
,k

− pm
dx+dz

n

})
,

which is the convergence rate of the standard nonparametric estimator without endo-
geneity. This is because the parameters in (5) do not depend on endogenous regressors
anymore, which allows us to circumvent the ill-posed inverse problem.
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6. MONTE CARLO SIMULATION

We conduct a small Monte Carlo simulation study to investigate the performance of
the PSMD estimator α̂n in finite samples. To this end, we consider the following DGP:

Y = FB(X ;ag(τ),bg(τ))−FB(0.5;ag(τ),bg(τ)+Φ(ε),

X = FB(Z/2+0.5;ah,bh)+Φ(η)− τ̃0,

where (ε,η)
′ ∼ BV N

([
0
0

]
,

[
1 0.3

0.3 1

])
with BV N standing for bivariate normal dis-

tributions, FB(·;a,b) is the beta distribution function with parameters a and b, Φ(·) is
the standard normal distribution function, and τ̃0 ∈ {0.25,0.5,0.75}. Under this DGP,
U = Φ(ε), V = Φ(η)− τ̃0, and QV |Z(τ̃0|Z) = 0 almost surely. We allow for ag(τ)

and bg(τ) to vary across the quantile level τ . Specifically, we set ag(τ) = 4+Φ−1(τ),
bg(τ) = 4−Φ−1(τ), and ah = bh = 2. Note that the normalization value x̄ in Assumption
1 is 0.5 in the simulation.

The sample size is set to be 500. We use polynomial sieve spaces to approximate g,
r, h, and m with kn ∝ n1/7 and Jn = (kg,n+1) ·(kh,n+1), where kn = max

(
kg,n,kr,n,kh,n

)
.

In our simulation, we set kn = 4 by choosing a proper constant C0 such that kn =
C0 · n1/7 = 4. For measures of the performance of the PSMD estimator α̂n, we focus
on the integrated bias (IBIAS) and integrated variance (IVAR). Specifically, we de-

fine (IBIAS)2 ≡
∫
X

(
1
m ∑

m
j=1 ĝ( j)

n (x;τ)−g0(x;τ)
)2

dFX (x), where m is the number of

simulations and ĝ( j)
n is the sieve estimator of g0 from the j-th simulation. The IVAR

is defined as IVAR ≡ 1
m ∑

m
j=1

[∫
X

(
ĝ( j)

n (x;τ)− 1
m ∑

m
j=1 ĝ( j)

n (x;τ)
)2

dFX

]
. The IBIAS

and IVAR are calculated by numerical integration over the unit interval. The integrated
mean squared error (IMSE) is defined as the sum of (IBIAS)2 and IVAR. We consider
τ ∈ {0.25,0.5,0.75}, and all results are obtained from 1000 simulations.

In the simulation, we compare the performance of the one-step estimator proposed
in this paper to that of a conventional two-step estimator. Specifically, a two-step esti-
mator of g0(·;τ) is obtained as follows: In the first step, we run a nonparametric QR
of X on Z using the model restriction QV |Z(τ̃|Z) = 0 almost surely. Then, we generate
V̂ ≡ X − ĥn(Z) and run a nonparametric QR of Y on X and V̂ in the second stage. The
quantile level for the first stage regression, τ̃ , is chosen by the researcher, and we allow
for misspecification of the reduced-form equation by assuming that QV |Z(τ̃|Z) = 0 al-
most surely for some τ̃ ̸= τ̃0. We consider both cases where the reduced-form equation
is correctly specified (i.e., τ̃ = τ̃0) and it is misspecified (i.e., τ̃ ̸= τ̃0) to investigate the
performance of the PSMD estimator of g0(·;τ).

Table 1 reports the IBIAS and IVAR of the one-step and two-step sieve estima-
tors of g0(·;τ) under correct specification for the reduced-form equation. We find that
both sieve estimators of g0(·;τ) perform well in finite samples. Moreover, the simu-
lation results indicate that the one-step estimator has a lower IVAR than the two-step
estimator, whereas IBIAS of the one-step estimator tends to be larger than that of the
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Table 1: Simulation Results: One-step and Two-step Estimators under Correct
Specification for the Reduced-form Equation (n = 500,kg,n = 4)

QV |Z(0.25|Z) = 0

ĝn(·;0.25) ĝn(·;0.5) ĝn(·;0.75)

One-step Two-step One-step Two-step One-step Two-step

(IBIAS)2 0.0158 0.0060 0.0068 0.0028 0.0171 0.0188

IVAR 0.0016 0.0025 0.0015 0.0039 0.0021 0.0048

IMSE 0.0174 0.0085 0.0083 0.0068 0.0191 0.0237

QV |Z(0.5|Z) = 0

ĝn(·;0.25) ĝn(·;0.5) ĝn(·;0.75)

One-step Two-step One-step Two-step One-step Two-step

(IBIAS)2 0.0141 0.0073 0.0127 0.0060 0.0110 0.0076

IVAR 0.0008 0.0024 0.0008 0.0030 0.0009 0.0024

IMSE 0.0149 0.0097 0.0135 0.0090 0.0119 0.0100

QV |Z(0.75|Z) = 0

ĝn(·;0.25) ĝn(·;0.5) ĝn(·;0.75)

One-step Two-step One-step Two-step One-step Two-step

(IBIAS)2 0.0178 0.0190 0.0054 0.0028 0.0094 0.0061

IVAR 0.0023 0.0070 0.0016 0.0047 0.0015 0.0026

IMSE 0.0201 0.0259 0.0070 0.0075 0.0109 0.0087

two-step estimator. In terms of the IMSE, we can find that the performance depends on
the quantile level of interest for the outcome equation. Specifically, when τ = 0.25 or
τ = 0.5, the two-step estimator has a slightly lower IMSE than the one-step estimator.
However, when τ = 0.75, then the one-step estimator tends to achieve a lower IMSE
than the two-step estimator. Figure 1 depicts the true structural function g0(·;τ) and the
means of the one-step and two-step sieve estimators of g0(·;τ) over the simulations (i.e.,
1
m ∑

m
j=1 ĝ( j)

n (x;τ)). The solid lines represent the true structural function, the marked lines
are the mean of the one-step sieve estimators, and the dashed lines are the mean of the
two-step sieve estimators from 1000 simulations. We can see that in terms of the bias,
the one-step estimator performs poorer at the tails of the support of X than the two-step
estimator, while the one-step estimator outperforms the two-step estimator in the interior
of the support of X .

We now turn our attention to the case where the reduced-form equation is misspeci-
fied. Table 2 reports the estimation results when the reduced-form equation is misspeci-
fied. We do not find discernible changes in the finite-sample performance of the one-step
and two-step estimators even when the reduced-form equation is misspecified. The re-
sults in Table 2 are qualitatively the same to those in Table 1. Although we do not report
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Figure 1: Simulation Results (n = 500, kg,n = 4)

τ = 0.25

τ = 0.5

τ = 0.75

Note: The solid lines represent the true structural function, and the dashed lines
are the mean of sieve estimators from 1000 simulations.



46 NONPARAMETRIC ESTIMATION OF QUANTILE REGRESSION MODELS

Table 2: Simulation Results: One-step and Two-step Estimators under Misspec-
ification for the Reduced-form Equation (n = 500,kg,n = 4)

ĝn(·;0.5)

τ̃0 = 0.25, τ̃ = 0.5 τ̃0 = 0.25, τ̃ = 0.75 τ̃0 = 0.75, τ̃ = 0.25 τ̃0 = 0.75, τ̃ = 0.5

One-step Two-step One-step Two-step One-step Two-step One-step Two-step

(IBIAS)2 0.0067 0.0028 0.0068 0.0028 0.0053 0.0028 0.0053 0.0028

IVAR 0.0016 0.0045 0.0016 0.0041 0.0016 0.0051 0.0015 0.0049

IMSE 0.0083 0.0073 0.0083 0.0070 0.0069 0.0079 0.0068 0.0077

the estimation results for the first-stage parameter (i.e., h0) in this paper, the simulation
results show that the one-step procedure yields a better estimator of h0 than the two-step
procedure in terms of both bias and variance. These results suggest that the one-step
procedure is robust to misspecification of the reduced-form equation in the sense that
regardless of whether the reduced-form equation is correctly specified or not, we can
obtain a consistent estimator of h0. In all, our one-step PSMD estimators perform well
in finite samples in the sense that they have a reasonable bias and a small variance.

7. CONCLUSIONS

In this paper, we consider a nonparametric triangular system of equations for QR.
Our model is a nonparametric extension of the semiparametric model of Lee (2007) and
shares some common features with the model of Newey et al. (1999). We provide a
set of conditions under which the model parameters are nonparametrically identified.
Then, we propose to use the PSMD estimation approach developed by Chen and Pouzo
(2012) to estimate the parameters, and establish the consistency with respect to the sup-
norm and the L2-convergence rate. The Monte-Carlo simulation study confirms that
the PSMD estimator performs well in finite samples. When comparing the one-step
PSMD estimator with a conventional two-step sieve estimator, the one-step estimator has
a lower variance than the two-step estimator, whereas the bias of the one-step estimator
tends to be higher than the bias of the two-step estimator.

While we show that the PSMD estimator in this paper is consistent and establish
its L2-convergence rate, it is needed to develop some distributional theory for statistical
inference. In our work in progress, we adopt the sieve inference method developed by
Chen and Pouzo (2015) to derive the theory for inference on functionals of the nonpara-
metric functions in the model of this paper.
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A. MATHEMATICAL PROOFS

In this section, we provide mathematical proofs of the main results. We introduce
notation that will be used in the proofs. Let (F , || · ||F ) be a metric space of real valued
function f : X → R. The covering number N(ε,F , || · ||F ) is the minimum number
of || · ||F ε-balls that cover F . The entropy is the logarithm of the covering number.
An ε-bracket in (F , || · ||F ) is a pair of functions l,u ∈ F such that ||l||F , ||u||F <
∞ and ||u− l||F ≤ ε . The covering number with bracketing N[](ε,F , || · ||F ) is the
minimum number of || · ||F ε-brackets that cover F . The entropy with bracketing is the
logarithm of the covering number with bracketing. The bracketing integral is defined as∫

δ

0

√
logN[](ε,F , || · ||F )dε . Let C denote a generic positive and finite constant. It can

be different across where it appears. Some empirical processes may not be measurable,
and thus the expectation operator cannot be applied to those processes. In such a case,
one can replace the expectation operator with the outer expectation operator. We use the
notation E[·] mainly to indicate the expectation operator, but it may also stand for the
outer expectation if its argument is not measurable.

A.1. PROOF OF THEOREM 1

Proof. Note that h(·) is identified over Supp(Z) under Assumption 3. Under Assump-
tions 2 and 4, the structural functions g and r are nonparametrically identified up to
additive constants by Theorem 2.3 in Newey et al. (1999). Finally, the normalization
condition in Assumption 1 identifies the structural functions.

A.2. PROOF OF THEOREM 2

We first recall that

m(X ,Z;α) = FY |X ,Z (g(X ,Z1)+ r(X −h(Z))|X ,Z)− τ. (8)

Lemma 1. Suppose that Assumptions 1–4 hold. If Assumptions 5–8 hold, then Assump-
tions 3.1 and 3.2-(a) in Chen and Pouzo (2012) are satisfied.

Proof. Condition (i) of Assumption 3.1 in Chen and Pouzo (2012) is satisfied by condi-
tion (i) in Assumption 8.

Condition (ii) of Assumption 3.1 in Chen and Pouzo (2012) is implied by the iden-
tification conditions (Assumptions 1–4).

Condition (iii) of Assumption 3.1 in Chen and Pouzo (2012) is guaranteed by As-
sumptions 6 and 7. Specifically, since we use polynomial sieve spaces for G , R, and
H , there exist {πng0}n, {πnr0}, and {πnh0} such that

||πnα0 −α0||A ,∞ = O

(
k
− pg

dx+dz1
g,n

)
+O

(
k
− pr

dx
r,n

)
+O

(
k
− ph

dz
h,n

)
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by Newey (1997). Moreover, max

(
k
− pg

dx+dz1
g,n ,k

− pr
dx

r,n ,k
− ph

dz
h,n

)
= o(1) by Assumption 7.

Assumption 5-(ii) implies that FY |X ,Z(·|x,z) is continuous for all (x′,z
′
)
′ ∈ Supp(X ,Z),

and therefore, we have ||πnα0 −α0||A ,∞ = o(1) under Assumptions 6 and 7. Therefore,
condition (iv) of Assumption 3.1 in Chen and Pouzo (2012) is met.

Assumption 3.2-(a) in Chen and Pouzo (2012) is satisfied under condition (ii) in
Assumption 8.

Lemma 2. Suppose that Assumptions 1–4 hold. If Assumptions 5–10 hold, then As-
sumption 3.3 in Chen and Pouzo (2012) is satisfied with

δ̄
2
m,n = η0,n = max

{
Jn

n
,J

− 2pm
dx+dz

n

}
= o(1).

Proof. We verify the conditions of Lemma C.2 in Chen and Pouzo (2012). Conditions
(i) and (ii) of Assumption C.1 in Chen and Pouzo (2012) are imposed by Assumption 5.
Conditions (iii) of Assumption C.1 in Chen and Pouzo (2012) is imposed by Assumption
10. Since sup(x,z)∈Supp(X ,Z) ||pJn(x,z)||2E ≍ J2

n when
(

pJn
)

n is a sequence of polynomial
functions (Newey (1997)), condition (iv) of Assumption 10 implies condition (iv) of
Assumption C.1 in Chen and Pouzo (2012). Lastly, condition (v) of Assumption C.1 in
Chen and Pouzo (2012) is implied by Assumption 8.

We now consider Assumption C.2 in Chen and Pouzo (2012). Since

sup
α∈An

|ρ(W,α)| ≤ 2

, condition (i) of Assumption C.2 in Chen and Pouzo (2012) is satisfied. Condition (ii)
of Assumption C.2 in Chen and Pouzo (2012) is guaranteed by Assumptions 9 and 10.
Specifically, under these assumptions, there exist a sequence of functions (πnm)n such

that πnm(x,z) = pJn(x,z)
′
β ∗

m,n for each n and E
[(

m(X ,Z;α)− pJn
m (X ,Z)

′
β ∗

m,n

)2
]
=

O
(

J
− 2pm

dx+dz
n

)
. Obviously, J

− 2pm
dx+dz

n = o(1).

Let δ > 0 such that δ = o(1). For each 1 ≤ j ≤ Jn and for any α ∈ An, it is
straightforward to see that

E[(p j(X ,Z))2 sup
α̃∈An:||α−α̃||∞≤δ

|ρ(W ;α)−ρ(W ; α̃)|2]

≲E[(p j(X ,Z))2 sup
α̃∈An:||α−α̃||∞≤δ

{1(Y ≤ g(X ,Z1)+ r(X −h(Z)))

−1
(
Y ≤ g̃(X ,Z1)+ r̃(X − h̃(Z))

)
}2].
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We note that if ||α − α̃||A ,∞ ≤ δ , then,∣∣∣(g(X ,Z1)+ r(X −h(Z)))−
(
g̃(X ,Z1)+ r̃(X − h̃(Z))

)∣∣∣≤ ||g− g̃||∞ + ||r− r̃||∞

+C · ||h− h̃||∞
≲ δ

by using the fact that r and r̃ are differentiable and their derivatives are uniformly
bounded under Assumptions 6 and 7. Therefore, by the law of iterated expectations
and the argument of Chen et al. (2003, p.1600), we have

E[(p j(X ,Z))2 sup
α̃∈An:||α−α̃||∞≤δ

|1(Y ≤ g(X ,Z1)+ r(X −h(Z)))

−1
(
Y ≤ g̃(X ,Z1)+ r̃(X − h̃(Z))

)
|]

≲E[(p j(X ,Z))2 · (FY |X ,Z(g(X ,Z1)+ r(X −h(Z))+δ |X ,Z)

−FY |X ,Z(g(X ,Z1)+ r(X −h(Z))−δ |X ,Z))]

≲E[(p j(X ,Z))2]δ

by Assumption 5. Since E
[
(p j(X ,Z))2

]
< ∞ for all j = 1,2, ...,Jn, we have

E

[
(p j(X ,Z))2 sup

α̃∈An:||α−α̃||∞≤δ

||ρ(W ;α)−ρ(W ; α̃)||2E

]
≤ K2

δ

for some K > 0. Therefore, condition (C.1) in Chen and Pouzo (2012) is satisfied with
κ = 1/2.

We now need to calculate the entropy logN
(

w1/κ ,A M0
n , || · ||A ,∞

)
for κ = 1/2,

where, for some M0 > 0, A M0
n ≡ {α ∈ An : λnP(α)≤ λnM0}. Since λn = 0 for all n by

Assumption 8, we have A M0
n = An for all M0 > 0. Moreover, we have An ⊆ An+1 for

all n ≥ 1, and ∪nAn = A , and thus, it is enough to calculate logN
(
w1/κ ,A , || · ||A ,∞

)
.

By Lemma 9.18 and Theorem 9.19 in Kosorok (2008), we have

logN
(

w1/κ ,A , || · ||A ,∞

)
≤ logN

(
w1/κ ,A , || · ||A ,∞

)
≲ logN

(
Cw1/κ ,G , || · ||A ,∞

)
+ logN

(
Cw1/κ ,R, || · ||A ,∞

)
+ logN

(
w1/κ ,H , || · ||A ,∞

)
≲w−

2(dx+dz1 )
pg +w− 2dx

pr +w− 2dz
ph .

Therefore, it is straightforward to obtain that∫ 1

0

√
1+ logN

(
w1/κ ,A , || · ||A ,∞

)
dw ≲

∫ 1

0

(
w−

(dx+dz1 )
pg +w− dx

pr +w− dz
ph

)
dw < ∞
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under Assumption 6. By Remark C.1-(iii) in Chen and Pouzo (2012), Assumption C.2-
(iv) in Chen and Pouzo (2012) is satisfied. Applying Lemma C.2-(iii) yields that As-
sumption 3.3 in Chen and Pouzo (2012) is satisfied with

δ̄
2
m,n = η0,n = max

{
Jn

n
,J

− 2pm
dx+dz

n

}
= o(1)

under Assumption 10.

Proof of Theorem 2

Proof. Note that for any ε > 0,

lim inf
n→∞

(
inf

α∈An:||α−α0||A ,∞≥ε

E
[
|m(X ,Z;α)|2

])
= inf

α∈A :||α−α0||A ,∞≥ε

E
[
|m(X ,Z;α)|2

]
.

Since it follows from Theorems 1 and 2 in Freyberger and Masten (2019) that (A , || ·
||A ,∞) is compact under Assumption 6, we have

inf
α∈A :||α−α0||A ,∞≥ε

E
[
|m(X ,Z;α)|2

]
> 0

under Assumptions 1–4. Moreover, E
[
|m(X ,Z;α)|2

]
is continuous in α . In all, by

Lemmas 1 and 2, all conditions of Theorem 3.1 in Chen and Pouzo (2012) are satisfied.
Therefore, ||α̂n −α0||A ,∞ = op(1).

A.3. PROOF OF THEOREM 3

Proof. Theorem 3 is a direct consequence of Theorem 4.1 and Remark 4.1 in Chen and
Pouzo (2012). Assumption 4.1-(i) in Chen and Pouzo (2012) is directly imposed by As-
sumption 11. Assumption 4.1-(ii) and (iii) in Chen and Pouzo (2012) are implied by As-
sumption 11-(ii). Since the sieve measure of ill-posedness supα∈Aos:||α−α0||̸=0

||α−α0||A ,2
||α−α0||

is equal to a constant under Assumption 5-(ii), applying Theorem 4.1 and Remark 4.1 in
Chen and Pouzo (2012) establishes the convergence rate with respect to || · ||A ,2.
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